Fractional Tikhonov regularization with a nonlinear penalty term

نویسندگان

  • Serena Morigi
  • Lothar Reichel
  • Fiorella Sgallari
چکیده

Tikhonov regularization is one of the most popular methods for solving linear systems of equations or linear least-squares problems with a severely ill-conditioned matrix and an error-contaminated data vector (right-hand side). This regularization method replaces the given problem by a penalized least-squares problem. It is well known that Tikhonov regularization in standard form may yield approximate solutions that are too smooth, i.e., the computed approximate solution may lack many details that the desired solution of the associated, but unavailable, error-free problem might possess. Fractional Tikhonov regularization methods have been introduced to remedy this shortcoming. However, the computed solution determined by fractional Tikhonov methods in standard form may display undesirable spurious oscillations. This paper proposes that fractional Tikhonov methods be equipped with a nonlinear penalty term, such as a TV-norm penalty term, to reduce unwanted oscillations. Numerical examples illustrate the benefits of this approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical approach for solving a nonlinear inverse diusion problem by Tikhonov regularization

In this paper, we propose an algorithm for numerical solving an inverse non-linear diusion problem. In additional, the least-squares method is adopted tond the solution. To regularize the resultant ill-conditioned linear system ofequations, we apply the Tikhonov regularization method to obtain the stablenumerical approximation to the solution. Some numerical experiments con-rm the utility of th...

متن کامل

A generalized conditional gradient method for nonlinear operator equations

The intention of this paper is to show the applicability of a generalized conditional gradient method for the minimization of Tikhonov-type functionals, which occur in the regularization of nonlinear inverse problems with sparsity constraints. We consider functionals of Tikhonov type where the usual quadratic penalty term is replaced by the pth power of a weighted p-norm. First of all, we analy...

متن کامل

Convergence rates for Morozov’s Discrepancy Principle using Variational Inequalities

We derive convergence rates for Tikhonov-type regularization with convex penalty terms, where the regularization parameter is chosen according to Morozov’s discrepancy principle and variational inequalities are used to generalize classical source and nonlinearity conditions. Rates are obtained first with respect to the Bregman distance and a Taylor-type distance and those results are combined t...

متن کامل

Iterated Tikhonov regularization with a general penalty term

Tikhonov regularization is one of the most popular approaches to solving linear discrete ill-posed problems. The choice of regularization matrix may significantly affect the quality of the computed solution. When the regularization matrix is the identity, iterated Tikhonov regularization can yield computed approximate solutions of higher quality than (standard) Tikhonov regularization. This pap...

متن کامل

Sparse Regularization with l Penalty Term

We consider the stable approximation of sparse solutions to non-linear operator equations by means of Tikhonov regularization with a subquadratic penalty term. Imposing certain assumptions, which for a linear operator are equivalent to the standard range condition, we derive the usual convergence rate O( √ δ) of the regularized solutions in dependence of the noise level δ. Particular emphasis l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 324  شماره 

صفحات  -

تاریخ انتشار 2017