Fractional Tikhonov regularization with a nonlinear penalty term
نویسندگان
چکیده
Tikhonov regularization is one of the most popular methods for solving linear systems of equations or linear least-squares problems with a severely ill-conditioned matrix and an error-contaminated data vector (right-hand side). This regularization method replaces the given problem by a penalized least-squares problem. It is well known that Tikhonov regularization in standard form may yield approximate solutions that are too smooth, i.e., the computed approximate solution may lack many details that the desired solution of the associated, but unavailable, error-free problem might possess. Fractional Tikhonov regularization methods have been introduced to remedy this shortcoming. However, the computed solution determined by fractional Tikhonov methods in standard form may display undesirable spurious oscillations. This paper proposes that fractional Tikhonov methods be equipped with a nonlinear penalty term, such as a TV-norm penalty term, to reduce unwanted oscillations. Numerical examples illustrate the benefits of this approach.
منابع مشابه
A numerical approach for solving a nonlinear inverse diusion problem by Tikhonov regularization
In this paper, we propose an algorithm for numerical solving an inverse non-linear diusion problem. In additional, the least-squares method is adopted tond the solution. To regularize the resultant ill-conditioned linear system ofequations, we apply the Tikhonov regularization method to obtain the stablenumerical approximation to the solution. Some numerical experiments con-rm the utility of th...
متن کاملA generalized conditional gradient method for nonlinear operator equations
The intention of this paper is to show the applicability of a generalized conditional gradient method for the minimization of Tikhonov-type functionals, which occur in the regularization of nonlinear inverse problems with sparsity constraints. We consider functionals of Tikhonov type where the usual quadratic penalty term is replaced by the pth power of a weighted p-norm. First of all, we analy...
متن کاملConvergence rates for Morozov’s Discrepancy Principle using Variational Inequalities
We derive convergence rates for Tikhonov-type regularization with convex penalty terms, where the regularization parameter is chosen according to Morozov’s discrepancy principle and variational inequalities are used to generalize classical source and nonlinearity conditions. Rates are obtained first with respect to the Bregman distance and a Taylor-type distance and those results are combined t...
متن کاملIterated Tikhonov regularization with a general penalty term
Tikhonov regularization is one of the most popular approaches to solving linear discrete ill-posed problems. The choice of regularization matrix may significantly affect the quality of the computed solution. When the regularization matrix is the identity, iterated Tikhonov regularization can yield computed approximate solutions of higher quality than (standard) Tikhonov regularization. This pap...
متن کاملSparse Regularization with l Penalty Term
We consider the stable approximation of sparse solutions to non-linear operator equations by means of Tikhonov regularization with a subquadratic penalty term. Imposing certain assumptions, which for a linear operator are equivalent to the standard range condition, we derive the usual convergence rate O( √ δ) of the regularized solutions in dependence of the noise level δ. Particular emphasis l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 324 شماره
صفحات -
تاریخ انتشار 2017